### **Evolution of Electron Beam (E-Beam) Treatment for Water**



Workshop on Application of Electron Beam (EB) Technology on WW & Biosolids Treatment May 10-11, 2018, FermiLab



### **Collaborators**

Joan B. Rose, Michigan State University Bill Cooper, University of California, Irvine Regina Sommer, University of Vienna Michael G. Nickelsen, Haley & Aldrich, Inc. Kimberly Kunihiro, Orange County Utilities







#### What is an "E-Beam"?

Most of us (used to) have one or more in our home!

Conventional CRT computer monitors or televisions

Electron Gun → Accelerator emits electrons @ 25,000 Volts

Scanned to create images



http://en.wikipedia.org/wiki/File:Egun.jpg

Thermionic electron gun assembly found on a color Samsung CRT monitor. The gun produces three high speed individual electron beams for the three primary colors (Red, Green, and Blue)



E-beam Workshop at FermiLab, May 2018

www.e-wastesolutions.net

#### **E-Beam for Water Treatment**

Accelerator → Electrons @ 500,000 to 1,500,000 volts (75 kW or more) scanned to penetrate water or vapor.



E-beam Workshop at FermiLab, May 2018

### The Electromagnetic Spectrum



http://www.scienceinschool.org/2011/issue20/em (ESA/AOES Medialab)

# Some Common Irradiation Uses

#### • Foods:

- Insect control
- Inhibits sprouting
- Controls mold
- Inactivates pathogens (e.g. E. coli, norovirus, Trichina parasite, etc.)
- Increases shelf life

#### Sterilization:

- Medical supplies & packaging
- Hospital waste
- Blood and tissues for transfusions

#### • Materials Processing:

- Composite materials curing
- Crosslinking
- Semi conductor enhancement



www.NPR.org Lui Kit Wong/MCT /Landov

#### Not irradiated



http://www.globalpeace.go.jp/en/qfile/ao7.html
Photo provided by the Shihorocho Agricultural
Cooperative Isotope Irradiation Center



http://www.arserrc.gov/www/fsit/FoodIrradiation.htm

### **Industrial Applications of E-Beam Sterilization**



Source: tactic-tech.com via: http://www.homelandsecuritynewswire.com/dr20120408-ebeam-technology-to-keep-food-supply-safe

#### **Configuration of e-beam Wastewater Treatment**





Virginia Key WWTP (Miami, FL) Large Scale Studies







#### Virginia Key E-Beam Demonstration Scale Pilot Plant



Diagram of the Electron Beam Scanner and Weir Assembly

## Electron Beam Research Facility at the Austrian Research Center, Seibersdorf, Austria

- Bench scale flow through system
- Flowing aqueous stream (3 m³/hr)
- 500 kV, 25 mA, scan width 1.2 m (High Voltage Engineering, USA)
- 400 up to 2000 Gy/s
- Enabled *Cryptosporidium* inactivation studies
- City of Vienna, Austria unchlorinated tap water

# Mobile E-Beam System: High Voltage Environmental Applications, Inc.





Recycled water treated for aquifer storage & Recovery must meet "Full Treatment" defined under Florida Administrative Code 62-610

#### **Orange County E-Beam Pilot Testing**

- **Unchlorinated Reclaimed Water (Site 1)**
- **UF Permeate (Site 2)**
- **RO Permeate (Site 4)**
- **UF/RO Membrane Concentrate (Site 6)**





E-beam Workshop at FermiLab, May 2018

#### **Advanced Oxidation Processes (AOPs)**

- AOPs are organic contaminant destruction processes.
- Rely on *in-situ* formation of hydroxyl radicals: •OH
- Involve two stages of oxidation:
  - Formation of the strong oxidants (e.g. •OH)
  - Reaction of the oxidants with organic contaminants
- Provide a barrier to both microbial and chemical contamination
  - One process = multiple benefits & barriers
  - Effectively reduces/removes low concentrations of organic chemicals

#### **Some Advanced Oxidation Processes**

| AOP                              | In-situ generated radical species                          |
|----------------------------------|------------------------------------------------------------|
| Electron Beam                    | •OH (oxidizer) •H (both oxidizer & reducer) e-aq (reducer) |
| Ozone/H2O2                       | •OH                                                        |
| TiO2/UV light                    | e- <sub>aq</sub><br>H+                                     |
| Fenton's chemistry (Fe(II)/H2O2) | •OH                                                        |
| Sonolysis                        | •OH<br>•H                                                  |
| UV/H2O2                          | •OH                                                        |

# Water Radiolysis: Formation of Free Radical Species in Water by Means of Ionizing Radiation



## Simplified Model of the Competition for the Free Radical Species in a Natural Groundwater



#### **E-Beam Disinfection Mechanism**

- Direct effects are extremely rapid (10<sup>-16</sup> seconds)
- Induced through energy deposition at sensitive target sites, typically vital sub-cellular components:
  - Enzymes
  - Nucleic acids
  - Genetic material





International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, Vienna, Austria 2009. Eb-Tech, Daejeon 305-500, Korea

### Irradiated foods, materials, water, etc., do not become radioactive.

- Particles that transmit radiation are not radioactive.
- Irradiated water creates transient radicals
  - Hydroxyl radical (•OH-)
  - Hydrogen atom (•H+)
  - Solvated electrons (e<sup>-</sup><sub>aq</sub>)
- Free radicals damage DNA and intercellular structures within living cells.



http://www.npr.org/blogs/thesalt/2012/01/12/145107755/why-x-rayed-food-isnt-radioactive-and-other-puzzles

#### Bacteriophage & E. coli Inactivation in Tap Water



Gerhinger et al., 2003. Bacteriophages as viral indicators for radiation processing of water: A chemical approach.

#### Efficacy of E-Beam on Seeded Microorganisms 0.0 1.0 Log 10 Inactivation 2.0 3.0 4.0 5.0 6.0 7.0 0 5 10 15 20 E-Beam Dose (KGrays)

E-beam Workshop at FermiLab, May 2018

♦ PRD-1

MS2

Fecal Coliforms

### **Efficacy of E-Beam on HPC**



E-beam Workshop at FermiLab, May 2018

#### **Electron Beam Inactivation of Cryptosporidium** (Potable Water)



## Efficacy of E-beam on Selected DBPs for each Dose on Unchlorinated Reclaimed Water (Site 1)

| Compound Ebeam Dose (Kgray) | Percent Removal |        |        |        |        |  |
|-----------------------------|-----------------|--------|--------|--------|--------|--|
|                             | 1               | 5      | 10     | 15     | 20     |  |
| Dichloroacetic acid         | 0.00            | 52.94  | 77.94  | 80.44  | 85.29  |  |
| Total Haloacetic acids      | 4.04            | 62.32  | 84.85  | 86.57  | 89.90  |  |
| Trichloroacetic acid        | 12.90           | 82.90  | >93.87 | >93.87 | >93.87 |  |
| Bromodichloromethane        | 16.67           | >94.44 | >94.44 | >94.44 | >94.44 |  |
| Chloroform                  | 45.15           | 87.97  | >99.05 | >99.05 | >99.05 |  |
| Total Trihalomethanes       | 52.38           | 89.56  | >99.27 | >99.27 | >99.27 |  |
| Removal Range               | 0 - 52%         | >53%   | >78%   | >80%   | >85%   |  |

#### **Effects of E-beam Treatment on Select Organic Compounds**



#### **Efficacy of E-Beam on DOC**

0.00

Inf

Start-Loc 1a 0

1



**Ebeam Dose (K Gy)** 

10

15

20

Inf.

**Finish** 

Loc 1a

E-beam Workshop at FermiLab, May 2018

5

## Efficacy of E-Beam on Color of Unchlorinated Reclaimed Water (250nm UV)



#### **Dose Ranges & Cost for Various Applications**

Ionizing effects are stated in terms of the absorbed dose



### **E-Beam for Water Treatment Timeline**

Food & Agriculture Research

F. Minsch used "X-"

E-Beam
Research
Center
Established
(Miami-Dade
WWTP)

1988

Waterborne pathogen inactivation studies

• 1998-2007

Miami-Dade Research Facility & Mobile Unit Dismantled: Worldwide interest grows for industry & textile, flue gasses, & food processing uses.

• 2012+

• 1896

radiation"

to kill food microbes

#### **E-Beam Applications for Water Treatment:**

- Process is technically sound and founded on good science.
- Demonstrated capable of non-selective destruction of organic compounds:
  - Endocrine disruptors
  - Pharmaceuticals
  - Toxic Organic Chemicals
  - Pesticides
  - Disinfection By-Products (DBPs)
    - THM
    - Nitrosamines
    - Brominated compounds
- Biosolids Treatment De-watering and Composting
  - Original Application of Miami and Deer Island (Boston)
- Disinfection achieved in complex matrices (highly turbid water, sludge, and RO membrane concentrate, textile dyes, etc., etc., etc...).





treatment technology??

#### **E-Beam Process**

- High density electron stream injection throughout water volume resulting in formation of:
  - Electrically excited states
  - Free radicals
- Rapid Reaction Rate
  - 10<sup>-7</sup> seconds after irradiation yields

$$H_2O \xrightarrow{e^-} [2.6]e_{aq}^- + [0.6]H \cdot + [2.7] \cdot OH +$$

$$[0.7]H_2O_2 + [2.6]H_3O^+ + [0.45]H_2$$

- Unique no other AOP can generate oxidizing and reducing chemistry simultaneously
- Importance of the three free radicals (•OH, H•, and e-aq)

#### THE ELECTROMAGNETIC SPECTRUM



Gigahertz (GHz) 10-9 Terahertz (THz) 10-12 Petahertz (PHz) 10-15 Exahertz (EHz) 10-18 Zettahertz (ZHz) 10-21 Yottahertz (YHz) 10-24

#### The Real Difference Is The Result

- Facilitate contaminant destruction by allowing for multiple reaction pathways
  - Greater potential to mineralize
  - Less potential for reformation
- Residual disinfectant  $(H_2O_2)$
- Energy Efficiency
- High Energy Delivery = Excellent Disinfection Capacity
  - Lethal doses
  - Instantaneous/short duration
  - USEPA approved for sludge disinfection
- Non-selective destruction of organics
- Rapid chemical reactions
  - Supports flow through applications
  - Excellent process flexibility

### Why?

- pH Independent
  - $_{\circ}~$  Equal performance from pH 3 to 11
- Solids Independent
  - 。 Sediments, soils, sludges
- Non Contact Apparatus
  - No fouling of lamps or membranes

### Why?...continued

- Temperature Independent
  - Variations have no treatment impact
- No organic sludge
  - Organics are mineralized
  - Reduces sludge generation from secondary treatment processes (like filtration)
- No air emissions
  - Aqueous technology
    - No  $NO_X$  and  $SO_X$

### Why...continued

- Flexibility for use at either end of pipe
  - Pretreatment/post treatment
    - Organics, Microbiological
    - Extend membrane life (prevents fouling)
  - Synergy with other processes
    - Sterilize ahead of RO/filtration
    - Improve performance of Biological treatment processes
    - Treats recalcitrant compounds

### El cost n Beam Economics

- Electron beam accelerators are available from 0.5 - 10 MeV in power levels from 5 - 1000 kW
- Capital cost (\$10,000 \$35,000/kW)
  - Function of system size power requirements
    - Dose requirement
    - Linear dependence on process rate
    - Logarithmic dependence on contaminant concentration
  - Offset by low operating cost
    - \$0.04/ton per kGy
    - \$0.15/1000 gal per kGy
      - assumes electricity cost at \$0.10 kWh and 70% E-beam utilization efficiency

#### Nitrite Oxidation

Nitrite ion readily/rapidly oxidized to nitrate ion via two pathways

$$\bullet OH + NO_2 \rightarrow \bullet NO_2 + OH$$

$$\bullet OH + CO_3^{2-} \rightarrow CO_3^{\bullet} + OH^-$$

•OH + •NO<sub>2</sub> 
$$\rightarrow$$
 H<sup>+</sup> + NO<sub>3</sub>

$$CO_3 \bullet^- + \bullet NO_2 \rightarrow NO_3 + CO_2$$

#### NDMA Destruction

- NDMA formed from\*:
  - Oxidation of UDMH (CH<sub>3</sub>)<sub>2</sub>NNH<sub>2</sub>
  - Reaction of DMA + HNO<sub>2</sub>/NO<sub>x</sub>/NH<sub>2</sub>Cl
- NDMA reversibly oxidized to dimethylnitramine

$$R_2NO$$
  $\xrightarrow{Ox/hv}$   $R_2NO_2$ 

<sup>\*</sup>Tuazon et al., Env. Sci. Techt 15, 283, (1981)